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Note: Each contestant is credited with the largest sum of points obtained for three
problems.

1. The distances from some point inside a regular hexagon to three of its vertices that
are consecutive, are equal to 1, 1 and 2, respectively. Determine the side length of
the hexagon. (4 points)

2. Let a and b be positive integers such that a
n+1 + b

n+1 is divisible by a
n + b

n for
infinitely many positive integers n. Is it necessarily true that a = b? (4 points)

3. Prove that any triangle can be cut into 2019 quadrilaterals each of which has both
a circumcircle (i.e. is cyclic) and an incircle (i.e. a circle that touches each of the
quadrilateral’s four sides). (4 points)

4. A magician and his assistant present the following trick. Thirteen empty closed
boxes are placed in a row. Then, the magician leaves the stage, and a random
person from the audience is selected to put two coins into two boxes of their choice,
one coin in each box, in front of the magician’s assistant, i.e. the assistant knows
which boxes contain coins. Then, the magician returns and his assistant is allowed
to open one box that does not contain a coin. After that the magician must choose
four boxes to be opened simultaneously. The goal of the magician is to open both
boxes with coins. Construct a scheme by which the magician and his assistant can
perform the trick successfully every time. (5 points)

5. Several positive integers that sum to 2019, are written in sequence. Neither a
number in the sequence, nor a sum of two or more adjacent numbers is equal to
40. What is the largest number of positive integers the sequence could consist of?

(5 points)


